Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells.
نویسندگان
چکیده
The androgen testosterone is essential for the Sertoli cell to support the maturation of male germ cells and the production of spermatozoa (spermatogenesis). In the classical view of androgen action, binding of androgen to the intracellular androgen receptor (AR) produces a conformational change in AR such that the receptor-steroid complex has high affinity for specific DNA regulatory elements and is able to stimulate gene transcription. Here, we demonstrate that testosterone can act by means of an alternative, rapid, and sustainable mechanism in Sertoli cells that is independent of AR-DNA interactions. Specifically, the addition of physiological levels of testosterone to Sertoli cells stimulates the mitogen-activated protein kinase signaling pathway and causes phosphorylation of the cAMP response element binding protein transcription factor on serine 133, a modification known to be required for Sertoli cells to support spermatogenesis. Androgen-mediated activation of mitogen-activated protein kinase and cAMP response element binding protein occurs within 1 min, extends for at least 12 h and requires AR. Furthermore, androgen induces endogenous cAMP response element binding protein-mediated transcription in Sertoli cells. These newly identified mechanisms of androgen action in Sertoli cells suggest new targets for developing male contraceptive agents.
منابع مشابه
Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells.
Proinsulin C-peptide has been reported to have some biological activities and to be possibly involved in the development of diabetic microangiopathy. In the present study, we examined the effects of C-peptide on the mitogen-activated protein kinase pathway in LEII mouse lung capillary endothelial cells. Stimulation of the cells with C-peptide increased both p38 mitogen-activated protein kinase ...
متن کاملcAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells.
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMCs) and plays an important role in the progression of atherosclerosis. Although recent reports have suggested that cAMP response element-binding protein (CREB) is necessary for the survival of neuronal cells, the role of CREB in VSMC proliferation is not determined. We examined the role of CREB in thrombin-induced VSMC proliferat...
متن کاملbetac cytokine receptor-induced stimulation of cAMP response element binding protein phosphorylation requires protein kinase C in myeloid cells: a novel cytokine signal transduction cascade.
We have recently shown that IL-3R occupancy activates a phosphatidylcholine-specific phospholipase C, and the sustained diacylglycerol accumulation subsequently activates protein kinase C (PKC). In human IL-3-dependent myeloid cells (TF-1), the novel PKCepsilon isoform regulates bcl-2 expression and cell survival. The report of a PKC activatable cAMP response element (CRE) in the bcl-2 promoter...
متن کاملTranscriptional regulation of basal cyclooxygenase-2 expression in murine lung tumor-derived cell lines by CCAAT/enhancer-binding protein and activating transcription factor/cAMP response element-binding protein.
Cyclooxygenase-2 (COX-2) is frequently expressed in cancer cells, contributing to tumor development. Most studies of COX-2 expression have examined artificially induced expression in noncancer cells rather than basal expression in cancer cells. Therefore, basal COX-2 expression and its regulation were examined in cell lines derived from a murine model of lung adenocarcinoma. The presence of COX...
متن کاملStimulation of endothelin B receptors in astrocytes induces cAMP response element-binding protein phosphorylation and c-fos expression via multiple mitogen-activated protein kinase signaling pathways.
The vasoconstrictor peptide endothelin (ET-1) exerts its physiological and pathological effects via activation of ET(A) and ET(B) receptor (ET-R) subtypes. In this study, we demonstrate that both ET-R subtypes are highly expressed in rat astrocytes in vivo, indicating that these cells are potential targets of the biological effects of ET-1 in the brain. In cultured cortical astrocytes, both ET-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 30 شماره
صفحات -
تاریخ انتشار 2004